PHOTOCYCLOADDITIONS OF AROMATIC THIONES TO ALLENES

H.J.T.Bos, H.Schinkel and Th.C.M.Wijsman

Laboratory of Organic Chemistry, Rijksuniversiteit Utrecht, The Netherlands.

(Received in UK 17 August 1971; accepted for publication 20 September 1971)

The communications of Gotthardt 1 prompt us to publish our results in this field (compare also 2).

After irradiation of thiobenzophenone (0.025 mole) with methoxyallene (0.100 mole) in 250 ml of benzene during 20 minutes with a high pressure mercury lamp (HPK 125 W) through a ${\rm K_2Cr_2O_7}$ -filter solution two isomeric adducts ${\rm C_{17}^H}_{16}^{\rm OS}$ could be isolated by crystallization and chromatography. One isomer was the alkylidenethietane I (Ar = ${\rm C_6H_5}$); oil; IR 1650 cm⁻¹ (C=C); PMR (in CCl₄) δ =3.21 (s, OCH₃), δ =4.91 (t, J=2.3 Hz, =CH-), δ =5.24 (t, J=2.3, =CH-), δ =5.35 (t, J=2.2,>CH-O) and δ =6.9-7.5 (10 aromatic H).

The other isomer was the thiopyran derivative II (Ar = C_6H_5); m.p.>124° (decomp.); IR in KBr 1650 cm⁻¹ (C=C); PMR (in CDCl₃) δ =3.42 (s, broad, >CH₂), δ =3.54 (s, OCH₃), δ =5.27 (s, >CH-S), δ =6.12 (t, J=1.4, =CH-O) and δ =7.1-7.6 (9 aromatic H). Both isomers were formed in yields of 15-20 %.

By heating of II (Ar = C_6H_5) at 140° during 5 minutes it almost quantitatively isomerized to III (Ar = C_6H_5); oil; IR 1650 cm⁻¹ (C=C), 1590 cm⁻¹(Ar-C=C); PMR (in CCl₄) δ =3.16 (s, OCH₃), δ =4.00 ("t", "J"=1, OCH₂), δ =5.14 (s, >CH-S), δ =6.71 ("q", "J"=1.0 en "J"=1.7, =CH-), δ =7.2 (9 aromatic H).

In the reaction of thiobenzophenone with some acetylenes also orthoringclosure with a benzene-ring has been observed³.

With xanthene-9-thione (0.010 mole) and methoxyallene (0.020 mole) adduct I (Ar₂ = $O(C_6H_4)_2$) was formed in 34 % yield after $2\frac{1}{3}$ h, m.p. 85° ; IR in KBr 1640 cm⁻¹ (C=C); PMR (in CDCl₃) δ =2.86 (s, OCH₃), δ =4.93 (t, J=2.3, =CH-), δ =5.10 (t, J=2.4, =CH-), δ =5.52 (t, J=2.2, >CH-O), δ =7.0-8.4 (m, 8 aromatic H); MS, m/e 282 (P⁺) and 58 (H₂C=C=S⁺). No appreciable amount of II could be detected.

Irradiation of allene with thiobenzophenone gave a mixture of products from which a (2:1)-adduct $C_{29}H_{24}S_2$, m.p.196-198° was isolated; PMR (in CCl₄) δ =3.57 (s, 2H), δ =3.62 (s, 2H) and δ =6.7-7.3 (20 aromatic H). The structure of this compound could not yet be resolved.

Irradiation of tetramethylallene with thiobenzophenone gave results analogous to those of Gotthardt¹.

Mechanism

It is assumed that ${\rm triplet}^2$ thiobenzophenone attacks methoxyallene at the central carbon atom 4 with formation of the biradical IV 5,6 . After spin inversion this can cyclize to the thietane I (Ar = ${\rm C_6H_5}$) or to the thiopyran derivative V, which will isomerize to II.

In the case of the more rigid xanthene-9-thione no ortho-attack on the benzene-ring occurs and only the thietane is formed.

- 1. H.Gotthardt, Tetrahedron Lett. 1971, 2343, 2345
- A.Ohno, Y.Ohnishi and G.Tsuchihashi, J.Amer.Chem.Soc. 91, 5038 (1969) and previous papers.
- A.Ohno, T.Koizumi, Y.Ohnishi and G.Tsuchihashi, Tetrahedron Lett. 1970, 2025.
- 4. H.J.T.Bos, C.Slagt and J.S.M.Boleij, Rec.Trav.Chim. 89, 1171 (1970).
- 5. J.S.M.Boleij and H.J.T.Bos, Tetrahedron Lett. 1971, in press.
- 6. L.R.Byrd and M.C.Caserio, J.Amer.Chem.Soc. 92, 5422 (1970).